Existence and Uniqueness of Strong Solutions for a Compressible Multiphase Navier-Stokes Miscible Fluid-Flow Problem in Dimension
نویسنده
چکیده
We prove the global existence and uniqueness of strong solutions for a compressible multifluid described by the barotropic Navier-Stokes equations in dim = 1. The result holds when the diffusion coefficient depends on the pressure. It relies on a global control in time of the L norm of the space derivative of the density, via a new kind of entropy. §
منابع مشابه
Compressible Navier-stokes Equations with Temperature Dependent Heat Conductivities
We prove the existence and uniqueness of global strong solutions to the one dimensional, compressible Navier-Stokes system for the viscous and heat conducting ideal polytropic gas flow, when heat conductivity depends on temperature in power law of Chapman-Enskog. The results reported in this article is valid for initial boundary value problem with non-slip and heat insulated boundary along with...
متن کاملEnergy Dissipation and Regularity for a Coupled Navier-Stokes and Q-Tensor System
We study a complex non-newtonian fluid that models the flow of nematic liquid crystals. The fluid is described by a system that couples a forced Navier-Stokes system with a parabolic-type system. We prove the existence of global weak solutions in dimensions two and three. We show the existence of a Lyapunov functional for the smooth solutions of the coupled system and use the cancellations that...
متن کاملRegular solutions of a problem coupling a compressible fluid and an elastic structure
We are interested by the three-dimensional coupling between a compressible viscous fluid and an elastic structure immersed inside the fluid. They are contained in a fixed bounded set. The fluid motion is modelled by the compressible Navier-Stokes equations and the structure motion is described by the linearized elasticity equation. We establish the local in time existence and the uniqueness of ...
متن کاملGlobal Existence for Id, Compressible, Isentropic Navier-stokes Equations with Large Initial Data
We prove the global existence of weak solutions of the Cauchy problem for the Navier-Stokes equations of compressible, isentropic flow of a polytropic gas in one space dimension. The initial velocity and density are assumed to be in L2 and L2 n BV respectively, modulo additive constants. In particular, no smallness assumptions are made about the intial data. In addition, we prove a result conce...
متن کاملWeak-strong uniqueness for the isentropic compressible Navier-Stokes system
We prove weak-strong uniqueness results for the isentropic compressible Navier-Stokes system on the torus. In other words, we give conditions on a strong solution so that it is unique in a class of weak solutions. Known weak-strong uniqueness results are improved. Classical uniqueness results for this equation follow naturally.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007